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Abstract. The Takahashi–Tachiki proximity-effect theory is applied to the Nb/Ta multilayer
system. The diffusion coefficients of the two metals and the critical temperature of Nb are used
as free parameters in fitting experimental phase diagrams. Magnetic-coherence-length scaling is
used in order to obtain phase diagrams that best reproduce the measured data. Several parameter
sets can compete in fitting an experimental curve. It is not always possible to decide which set
gives the most realistic result.

1. Introduction

After Takahashi and Tachiki [1] launched an advanced theory on upper critical fields
in metallic multilayers, only a limited number of authors have studied its implications.
Unfortunately, most calculations done with this theory considered model systems only [1–
3]. Auvil and Ketterson [4] compared the theory to experiments on Nb/Cu multilayers, but
limited themselves to the critical temperature. In their review article, Jin and Ketterson [5]
asserted that most systems were still waiting for a thorough analysis in terms of this theory.

In a previous publication [6], we met this demand by extensively studying the V/Ag and
Nb/Cu systems. The Takahashi–Tachiki equations were solved exactly and the results were
searched for the best possible fits to experimental phase diagrams. As several problems were
encountered in obtaining reasonable fits, the analysis of these systems was deepened [7].
A scaling procedure was introduced for the magnetic coherence length, which considerably
improved upon the phase diagrams of V/Ag and Nb/Cu, and of the related systems V/Cu
and Nb/Ag.

All systems studied previously [4, 6] in the framework of the full Takahashi–Tachiki
theory were composed of a superconducting transition metal and a noble metal, the latter
being a notorious non-superconductor. For such systems the methods of solution developed
by Radovíc et al [8] and Takahashi and Tachiki apply equally well. The present paper aims
at a further broadening of the discussion by the analysis of the Nb/Ta multilayer system,
in which both metals are superconductors. For such a system the method of Radović et
al does not work, while the more general eigenfunction method of Takahashi and Tachiki
does. Fortunately, Broussard and Geballe [9, 10] provided detailed experimental data for
this combination of metals and also Ikebeet al [11] did measurements on Nb/Ta. Therefore,
an extensive comparison can be made between theory and experiments.

In section 2 the theory [1, 6, 12] and the fitting procedure [6, 7] will be briefly
summarized. Section 3 shows the results. The fitting procedure is applied both with and
without magnetic-coherence-length scaling. The final section summarizes the conclusions.
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2. Theory and fitting procedure

The starting point of the Takahashi–Tachiki theory [1, 12] is Gorkov’s linearized integral
equation for the pair potential [13]

1(r) =
∫

K(r, r′) 1(r′) d3r ′. (1)

The kernelK(r, r′) can be expanded as

K(r, r′) = V (r)kT
∑

ω

Qω(r, r′) (2)

which contains a position-dependent BCS electron–electron interaction coupling constant
V (r) and a summation over discrete frequenciesω = (2n + 1)πkT . The summation is
restricted to frequencies|ω| 6 ωD, ωD being the Debye frequency. According to Takahashi
and Tachiki, the functionQω(r, r′) can be derived from the following Green’s-function-like
differential equation

[2|ω| + L(∇)]Qω(r, r′) = 2πN(r)δ(r − r′) (3)

whereN(r) is the position-dependent density of states at the Fermi energy. The differential
operatorL(∇) is given by

L(∇) ≡ −h̄D(r)

(
∇ − 2ieA(r)

h̄c

)2

(4)

where D(r) is the position-dependent electronic diffusion constant andA(r) the vector
potential of the applied magnetic field. For multilayers, the three functionsN(r), V (r),
andD(r) are assumed to be constant within a single material, making discontinuous jumps
at the interfaces.

Defining the pair functionF(r) ≡ 1(r)/V (r) and expandingQω(r, r′) and F(r) in
terms of the eigenfunctionsψλ(r) of the operatorL(∇) with corresponding eigenvaluesελ,
the following secular equation is derived:

det

∣∣∣∣∣δλλ′ − 2πkT
∑

ω

1

2|ω| + ελ

Vλλ′

∣∣∣∣∣ = 0 (5)

whereVλλ′ is the matrix element〈ψλ|V |ψλ′ 〉. If this equation is satisfied, there are non-trivial
solutions for the pair functionF(r). The highest temperature for which such a solution
exists is the field-dependent critical temperature.

For multilayers, the Takahashi–Tachiki theory requires seven input parameters. These
are a single (average) value for the Debye temperature and the values for the density of states
at the Fermi levelN , the normal-state electronic diffusion constantD and the BCS electron–
electron coupling constantV for the two constituent metals. Three of these seven properties,
the diffusion coefficients of both metals and the density of states of the superconductor
(Nb, in the case of Nb/Ta), are used as free parameters to fit three experimental points
in the phase diagram: the multilayer critical temperatureTc and the perpendicular and
parallel upper critical fieldsHc2,⊥(T ) andHc2,‖(T ) at a certain temperatureT . The fitting
procedure generally renders two possible solutions [7], that is, two distinct parameter sets
{NS, DS, DN} that fit the three points in the phase diagram. The solution with the larger
ratio NSDS/NNDN will be referred to as the first solution. The second solution corresponds
to the smaller value of the same ratio.

TheHc2,‖-curves show several characteristic regimes, which depend on the magnitude of
the magnetic or Ginzburg–Landau coherence length,ξ = √

h̄c/2eH , in relation to the layer
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thicknesses. For the first solutions, theHc2,‖-curve shows generally two regimes. Close
to Tc, whereHc2,‖(T ) is linear, the magnetic coherence length is large and the multilayer
behaves as an average bulk material. This is called the average three-dimensional (3D)
regime. At lower temperatures, the curve crosses over to a two-dimensional (2D) regime.
Here, the magnetic coherence length is of the order of the layer thicknesses. The pair
function nucleates in an S layer and theHc2,‖-curve shows a square-root-like behaviour.
Figure 4—see later—is a typical phase diagram showing these two regimes. For the second
solutions, the 2D regime can correspond to nucleation in the N layer. In that case, there can
be a third regime at still lower temperatures, where the nucleation point shifts back to the
S layer. This is called the three-dimensional (3D) regime. The crossover between 2D and
3D is discontinuous, causing a kink in theHc2,‖(T )-curve. Figure 5—see later—is phase
diagram that shows all three regimes.

By use of a scaling procedure [7], the magnitude of the magnetic coherence lengthξ

can be controlled independently of the magnetic fieldH , thus giving much more freedom
in fitting the experimental data. The essence of magnetic-coherence-length scaling is the
replacement of the original equation with

ξ =
√

αh̄c

2eH
(6)

whereα is a scaling parameter. Sinceξ determines the position of the dimensional crossover
in Hc2,‖(T ), scaling uncouples the magnitude ofH and the crossover temperature. An
external justification is lacking for the introduction of this factor, but it is the only way by
which phase diagrams can be modified to represent the data more closely.

3. Results

Broussard and Geballe [9, 10] provided an extensive experimental analysis of the Nb/Ta
system. Apart from measuring the phase diagrams, they supplemented their work with the
determination of the diffusion coefficients of the separate metals embedded in the multilayer.
This was done by measuring the parallel resistivity of the multilayer and separating the
contributions of the two metals according to the model of Gurvitch [14]. This offers a nice
opportunity to compare the fitting diffusion coefficients to experimental values.

The present system has the advantage that the lattice constants of the two BCC metals
are close together. For niobium and tantalum, the values are 3.30 and 3.31Å, respectively.
So the lattices of the metals are not expected to be seriously distorted at the interfaces of
this coherent multilayer system. The boundary resistance should be correspondingly low.
However, according to Broussard and Geballe [9, 10], the interdiffusion of niobium and
tantalum can be an important effect. They state that their sample Nb(1.9Å)/Ta(1.5Å) is in
fact an anisotropic alloy, rather than a multilayer. For larger layer thicknesses, it might be
necessary to account for a NbTa layer in between Nb and Ta. This has, however, not been
implemented in the present calculations.

To some extent, Broussard and Geballe gave a theoretical analysis of the experimental
results. As far as the critical temperature of thick-layer systems was concerned, they claimed
that the results cannot be fitted by the Werthamer theory [9]. The reason they gave is that
niobium especially is not in the dirty limit. Therefore, they used a modified version of the
Werthamer theory, which is formulated by Kogan [15] and meant to apply to superconductors
that are not in the dirty limit. This theory could well reproduce theTc of the thick-layer
systems. For thin-layer systems, only the Cooper–de Gennes limit was calculated. It was
stated that a Nb–Ta interface layer of 10Å is needed to obtain a reasonable correspondence
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with the measurements. The perpendicular upper critical fields were examined by using
Kogan’s theory as well. It was found that the slope ofHc2,⊥(T ) at Tc could well be
described by this theory, but the positive curvature of the curve could not be explained.
Parallel upper critical fields were only analysed within the scope of anisotropic Ginzburg–
Landau theory. So, Kogan’s theory was not used to produce full phase diagrams. In the
present work, we do study full diagrams. The Takahashi–Tachiki theory is not restricted to
thick-layer systems, nor is it limited to perpendicular magnetic fields. However, it has the
restriction that it is valid in the dirty limit only. An extension to less dirty systems is not
available.

As before, only the average of the Debye temperatures enters into the theory. We
used a value of 267.5 K, which derives from 277 K for Nb and 258 K for Ta. The
other fixed parameters, used in applying our fitting procedure, areNTa = NTa(bulk) =
8.74× 1047 J−1 m−3 and VNb and VTa. The latter two are determined from the bulk
critical temperature and the bulk density of states, usingTc,Nb(bulk) = 9.26 K, NNb(bulk) =
11.5 × 1047 J−1 m−3, Tc,Ta(bulk) = 4.48 K andNTa(bulk). Now, NNb, DNb and DTa are the
free parameters, used to fit the multilayerTc and the critical fieldsHc2,⊥(T ) andHc2,‖(T ) for
some temperatureT to be chosen. Generally, this temperature will be small and correspond
to the three-dimensional regime ofHc2,‖(T ). At the end of this section we will also consider
fits for which the fit temperature is inside the two-dimensional regime.

Table 1. Fitting parameters of the first solution for Nb/Ta.

dNb/dTa Tc Tfit Tc,Nb DNb DTa DBG
Nb DBG

Ta
(Å/Å) (K) (K) (K) (cm2 s−1) (cm2 s−1) (cm2 s−1) (cm2 s−1)

1.9/1.5 6.09 4.62 7.28 7.87 0.34 6.6 4.7
10.9/8.6 6.28 4.75 7.61 8.17 0.61 6.7 4.9
18.5/14.5 6.67 4.00 8.28 9.79 1.02 10.2 7.4
30.5/23.9 6.90 3.75 8.67 10.6 1.29 13.8 9.8
52.7/41.4 7.12 3.36 9.04 10.2 1.91 20.5 11.2
89/69 7.29 2.76 9.26 13.7 1.83 31.9 16.6

128/100 7.31 2.25 9.27 15.0 2.39 41.3 16.2
253/199 7.57 3.80 9.54 12.9 3.95 75.5 16.6

98/477 5.57 2.17 9.86 69.1 4.89 164 30
290/490 6.95 3.26 9.21 26.6 2.41 146 24
490/520 7.69 2.40 182 24

3.1. First-solution results

The first-solution results of the above fitting procedure, applied to the data of Broussard and
Geballe [9, 10], are listed in table 1. The first three columns show the layer thicknesses,
the measured multilayerTc and the fitting temperature. The fourth to the sixth columns
show the fitting material parameters:Tc,Nb, DNb and DTa. The last two columns show
the experimental values of the diffusion coefficients, obtained by Broussard and Geballe
from resistivity measurements. The first two rows could be obtained using thin-layer-limit
expressions [7, 12]. For the Nb(490̊A)/Ta(520Å) system, the first solution does not exist.
This is due to the combination of relatively thick layers and a relatively small anisotropy at
the fitting temperature.

Figure 1 shows the layer-thickness dependence of the niobium critical temperature that
results from our fitting procedure. A clear tendency to increase with the layer thickness
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Figure 1. The layer-thickness dependence of the
fitting niobium critical temperature, according to the
first solution as listed in table 1.

is observed. Apart from the Nb(253̊A)/Ta(199 Å) result, which is slightly too high, and
the Nb(98Å)/Ta(477Å) result, which is even somewhat higher, the points fall on a single
curve. They nicely converge to the bulk niobiumTc, which is indicated by the dashed line.
This agrees with the behaviour of a single niobium film [6]. The graph is considerably
better than what was found [6] forTc,Nb in Nb/Cu multilayers.

Figure 2. The layer-thickness dependence of
the niobium diffusion coefficient as listed in
table 1. The solid circles show the first-solution
results. The open triangles show the resistivity-
measurement-based values of Broussard and
Geballe. Two of the data points of Broussard
and Geballe are outside the range of this graph.
These are indicated by the arrows.

The layer-thickness dependence of the niobium diffusion coefficient is shown in figure
2. The solid circles correspond to the results of the fitting procedure—see the fifth column
of table 1. The open triangles represent the measured values of Broussard and Geballe,
DBG

Nb —see the seventh column of table 1. There are two deviating values ofDBG
Nb that are

outside the range of the graph, namely, the one for Nb(98Å)/Ta(477 Å) and the one for
Nb(290 Å)/Ta(490 Å). Whereas the other values are nicely connected by a single straight
line, those two are much higher than can be reconciled with this linear behaviour. From
references [9] and [10] it is not clear what this discrepancy arises from. Returning to figure
2, it is seen that at small thicknesses the fitting results coincide with the measurements. But
at larger layer thicknessesDNb does not keep up with the values given by Broussard and
Geballe. Although the fittingDNb increases with the layer thickness, the dependence does
not seem to be linear. Again, Nb(98̊A)/Ta(477Å) is an exception to the general behaviour
and falls above all other data points. When comparing the behaviour of figure 2 to the
heuristic interface scattering rule of Banerjeeet al [16] (equation (12) of reference [6]), it is
seen that the present results are much larger than predicted by the equation, the difference
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being given by a factor of the order 6. According to the information supplied by Broussard
and Geballe it seems reasonable to attribute this difference to the fact that the niobium in
their Nb/Ta samples is indeed much purer than it is in the Nb/Cu samples [16].

The layer-thickness dependence of the tantalum diffusion coefficient is shown in figure
3. The solid circles correspond to the results of the fitting procedure and the open triangles
represent the values ofDBG

Nb , as measured by Broussard and Geballe. Again the fitting values
increase with the layer thicknesses. At lower temperatures the points can be grouped onto a
straight line. At higher temperatures there is a tendency to saturate, but the result for Nb(290
Å)/Ta(490 Å) falls below this general behaviour. For the whole temperature range, the
fitting results are much smaller than the values Broussard and Geballe extracted from their
resistivity measurements. The overall difference is given by a factor of approximately 5.

Figure 3. The layer-thickness dependence of
the tantalum diffusion coefficient as listed in
table 1. The solid circles show the first-solution
results. The open triangles show the resistivity-
measurement-based values of Broussard and
Geballe.

Figure 4. The upper-critical-field curves of Nb(98
Å)/Ta(477 Å). The first solution is shown. The
triangles show the data points of Broussard and
Geballe (references [9, 10]).

Using the fitting parameters of table 1 we can calculate the critical fields over the whole
temperature domain and compare them to the experimental points. The phase diagrams
of the systems withdTa 6 100 Å show an average three-dimensional (3D) behaviour at
all temperatures. Since there is no dimensional crossover for these systems, the calculated
curves can easily reproduce the experimental ones. The curves in this regime are linear. The
three remaining systems show a dimensional crossover from average three-dimensional to
two-dimensional (2D) behaviour. Figure 4 is an example of such a system, namely, Nb(98
Å)/Ta(477Å). The solid lines are the theoretical curves, which have been fitted to the data
at 2.17 K. The triangles show the measured data [9]. The measuredHc2,⊥ is almost linear,
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in contrast to the results for Nb/Cu, where a positive curvature was found. Since a linear
temperature dependence can easily be fitted by the first solution, the perpendicular upper
critical field is very well reproduced by the theory. The experimentalHc2,‖ exhibits a single
smooth dimensional crossover, that looks qualitatively the same as the crossovers observed
in Nb/Cu. The crossover temperatureT ∗ (the point of maximum curvature) is measured at
3.1 K. It is seen that the calculated curve has a dimensional crossover of the same kind,
but at a higher temperature, namely,T ∗ = 4.44 K. This and the overestimation of the
anisotropy nearTc cause an overestimation of the parallel upper critical field everywhere
above the fitting temperature. A better result can be obtained by using a scaled magnetic
coherence length, as in equation (6), with a scaling factor ofα = 2. The scaled fitting
material parameters areTc,Nb = 10.12 K, DNb = 141 cm2 s−1 and DTa = 8.25 cm2 s−1.
The diffusion coefficients are approximately a factor ofα larger. They are closer to, but still
smaller than the resistivity-measurement-based values given by Broussard and Geballe. The
niobium critical temperature has increased with respect to the unscaled solution. Its value
exceeds the bulk niobiumTc by 0.9 K. As a result of the scalingT ∗ has shifted to 3.56 K.
However, scaling does not improve upon the high-temperature anisotropy. Consequently,
the resulting curve forHc2,‖ still overestimates the experimental results.

Table 2. Fitting parameters of the second solution for Nb/Ta.

dNb/dTa Tc Tfit Tc,Nb DNb DTa DBG
Nb DBG

Ta
(Å/Å) (K) (K) (K) (cm2 s−1) (cm2 s−1) (cm2 s−1) (cm2 s−1)

1.9/1.5 6.09 4.62 7.28 0.34 12.1 6.6 4.7
10.9/8.6 6.28 4.75 7.61 0.60 12.6 6.7 4.9
18.5/14.5 6.67 4.00 8.28 0.98 15.4 10.2 7.4
30.5/23.9 6.90 3.75 8.67 1.21 16.8 13.8 9.8
52.7/41.4 7.12 3.36 9.04 1.73 16.2 20.5 11.2
89/69 7.29 2.76 9.26 1.63 23.5 31.9 16.6

128/100 7.31 2.25 9.22 1.37 29.4 41.3 16.2
253/199 7.57 3.80 9.15 0.97 198 75.5 16.6

98/477 5.57 2.17 8.20 0.15 956 164 30
290/490 6.95 3.26 9.26 1.38 238 146 24
490/520 7.69 2.40 9.76 4.29 116 182 24

3.2. Second-solution results

The results of the second type of solution are listed in table 2. From the left to the right, the
successive columns show the layer thicknesses, the multilayerTc, the fitting temperature,
the fittingTc,Nb, DNb andDTa and the measured values of the diffusion coefficients, obtained
by Broussard and Geballe from resistivity measurements.

For the three-dimensional multilayers (dTa 6 100 Å), the fitting values ofTc,Nb are
almost the same as for the first solution. The points fall on a single curve. A tendency
to increase with the niobium layer thickness is observed and atdNb = 89 Å the value of
Tc,Nb has converged to the bulkTc. The four two-dimensional multilayers show a tendency
of their own, that cannot be reconciled with the behaviour of the thin-layer systems. The
corresponding values ofTc,Nb again fall on a single curve, that neatly increases with the
layer thickness. But this curve is clearly not an extrapolation of the thin-layer results and
it continues to increase after the bulk niobiumTc has been reached.

The values found forDNb are much smaller than was found for the first solution. It
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is impossible to extract a tendency from its behaviour with the layer thickness. Even the
fact that the diffusion coefficients should be larger for thicker layers is not supported by the
data. The lack of cohesion ofDNb as a function of layer thickness strongly suggests that
the first solution is a much better alternative.

For the second-solution results for the fitting tantalum diffusion coefficient, there is
again a clear distinction between the thin- and the thick-layer behaviour. FordTa 6 100 Å,
the layer-thickness dependence is approximately linear and the fitting values increase with
the layer thickness. The deviation from the values of Broussard and Geballe is close to
6 cm2 s−1 for all of these multilayers. For thick-layer systems, however, extreme values
for DTa are found, that do not fit in with any cohesive behaviour. This provides us with
another reason to set a higher value upon the first solution.

Figure 5. The upper-critical-field curves of Nb(490
Å)/Ta(520Å). The graph shows the second solution
without magnetic-coherence-length scaling. The
triangles show the data points of Broussard and
Geballe (reference [9]).

Due to the extreme ratios found between the fitting diffusion coefficients of the two-
dimensional systems, the corresponding calculated phase diagrams have extreme charact-
eristics. Figure 5 illustrates this for the Nb(490Å)/Ta(520 Å) system. The perpendicular
upper critical field shows a very strong positive curvature. This is in disharmony with the
experimental findings, represented by the open triangles. For the parallel upper critical field,
the correspondence is much better. There is a large temperature region, ranging from 4 to 7
K, where nucleation occurs in the Ta layer. At 4.05 K, there is a discontinuous dimensional
crossover, to the left of which the calculated curve fits the experimental data. Remarkably,
the crossover looks very similar to the one that was actually measured, although it has a
different position in theH–T plane. Actually, the measuredHc2,‖ suggest that nucleation in
the Ta layer really takes place. However, the large region of nucleation in Ta is due to the
large ratio of the diffusion coefficients of the metals. It was precisely this large ratio that
caused the positive curvature ofHc2,⊥. Therefore, the implication of the measuredHc2,⊥
is that such a large ratio does not exist and, consequently, that nucleation in tantalum is
highly improbable.

3.3. The Nb(490̊A)/Ta(520Å) system

It is interesting to dwell upon the phase diagram of Nb(490Å)/Ta(520 Å). It was found,
using a fitting temperature of 2.40 K, that the first solution did not exist. This problem
may well be overcome by using another fitting temperature. Since 2.40 K was in the
three-dimensional regime, one might try to use a temperature located in the 2D regime.
When using 4.22 K, a first solution does indeed exist. It leads to a niobium critical
temperature of 10.05 K and the fitting diffusion coefficients areDNb = 16.3 cm2 s−1 and
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DTa = 13.5 cm2 s−1. The phase diagram, corresponding to these parameters, is depicted
in figure 6. The result forHc2,‖ is remarkable. Although the three-dimensional regime is
missing completely from the curve, both the 2D and the3D regimes are fitted perfectly.
Apparently, the high-temperature behaviour can well be described by moderate diffusion
coefficients and nucleation in Nb. TheHc2,⊥-curve deviates somewhat, showing a slightly
overestimated concavity.

Figure 6. The upper-critical-field curves of
Nb(490 Å)/Ta(520 Å). The graph shows the first
solution, obtained by fitting the critical fields at a
temperature in the two-dimensional regime. The
triangles show the data points of Broussard and
Geballe (reference [9]).

Figure 7. The upper-critical-field curves of Nb(490
Å)/Ta(520 Å). The graph shows the second
solution. A scaling factorα = 2 has been used for
the magnetic coherence length. The triangles show
the data points of Broussard and Geballe (reference
[9]).

An amazing result is obtained by applying magnetic-coherence-length scaling, equation
(6), to the second solution (see figure 5). When usingα = 2 and a fitting temperature of
1.5 K, we find the fitting material parametersTc,Nb = 9.84 K, DNb = 4.64 cm2 s−1 and
DTa = 328 cm2 s−1. The corresponding phase diagram is shown in figure 7. Again, we find
a curve that fits the two-dimensional and the 3D-average regime ofHc2,‖ perfectly. In fact,
on the right-hand side of the kink (T > 2.91 K), the curve coincides with the first-solution
diagram of figure 6. So the high-temperature behaviour can also be described by extreme
diffusion coefficients and nucleation in Ta. Clearly, when comparing figures 6 and 7, the
former reproduces the measured perpendicular upper critical field much better. On the other
hand, the latter has a 3D regime that, indeed, does not coincide with the measured curve,
but that is at least of the same character as the experimental low-temperature regime. The
theory does not give a decisive answer to the question of the real nucleation point. On the
one hand, the shape of the two-dimensional regime seems to allow for both possibilities.
On the other hand, the three-dimensional regime andHc2,⊥ suggest opposite possibilities.
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3.4. The fitting to the data of Ikebe et al

Ikebe et al [11] also measured the upper critical fields of Nb/Ta. Only a single multilayer
was studied, with layer thicknesses of 100Å for both metals. The sample used is of a very
different nature to the ones used by Broussard and Geballe. The upper critical fields are
almost a factor of 5 larger. SinceHc2 is roughly inversely proportional to the diffusion
coefficients, this implies that the samples of Ikebeet al are much more dirty. The fitting
material parameters of the first solution areTc,Nb = 6.57 K, DNb = 2.80 cm2 s−1 and
DTa = 0.737 cm2 s−1. The latter two values are much smaller than the values mentioned in
table 1, due to the dirtiness of the present sample. The niobiumTc is remarkably low, which
may well be a side-effect of the small diffusion coefficients. Concerning the phase diagram
of this system,Hc2,⊥ is fitted perfectly by the calculated curve. However, the experimental
graph ofHc2,‖ is linear, whereas the calculated one has a positive curvature and a weak
dimensional crossover. Since the latter is only vaguely present, the overall correspondence
of the theory and the measurements is not too much disturbed by this disagreement.

4. Conclusions

We have computed exact solutions of the Takahashi–Tachiki equation and compared them
to experiments. An earlier discussion was extended to another combination of metals into
multilayers, namely, Nb/Ta, in which both metals are superconductors. For this system,
the amount of data available is rather complete. It was found that the fitting material
parameters of the first solution were in good agreement with the expectations, although the
diffusion coefficients determined from resistivity measurements did not always match with
the fitting results. For Nb(490̊A)/Ta(520 Å), the experimental phase diagram suggested
that the first solution withTfit in the 2D regime was preferable as far as perpendicular fields
were considered, but only the second solution could reproduce the parallel upper critical
field to a reasonable extent. When only the high-temperature part of the phase diagram was
considered, the parallel upper critical field could be fitted by both the first and the second
solutions, with nucleation in Nb and Ta, respectively. It is remarkable that these two very
different types of solution can nevertheless yield an identical high-temperature behaviour.

Presumably, the agreement between theory and experiment will be better when a less
dirty version of the theory is used. The tentative theoretical analysis of Nb/Ta by Broussard
and Geballe points in that direction. Currently, such a modified version is only available
in the Werthamer approximation. The corresponding modification of the Takahashi–Tachiki
theory is a subject of future research.
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